AN INTEGRAL–TYPE OPERATOR FROM BLOCH SPACES TO Qp SPACES IN THE UNIT BALL

نویسنده

  • SONGXIAO LI
چکیده

Let H(B) denote the space of all holomorphic functions on the unit ball B of Cn . Let α > 0 , f ∈ H(B) with homogeneous expansion f = ∑k=0 fk . The fractional derivative Dα f is defined as Dα f (z) = ∞ ∑ k=0 (k+1)α fk(z). Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0 . In this paper we consider the following integral-type operator

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIEMANN-STIELTJES OPERATORS FROM F(p,q,s) SPACES TO α-BLOCH SPACES ON THE UNIT BALL

Let H(B) denote the space of all holomorphic functions on the unit ball B Cn. We investigate the following integral operators: Tg( f )(z)= ∫ 1 0 f (tz) g(tz)(dt/t), Lg( f )(z)= ∫ 1 0 f (tz)g(tz)(dt/t), f H(B), z B, where g H(B), and h(z)= ∑n j=1 zj(∂h/∂zj)(z) is the radial derivative of h. The operator Tg can be considered as an extension of the Cesàro operator on the unit disk. The boundedness...

متن کامل

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Volterra composition operators from generally weighted Bloch spaces to Bloch-type spaces on the unit ball

Let φ be a holomorphic self-map of the open unit ball B, g ∈ H(B). In this paper, the boundedness and compactness of the Volterra composition operator T g from generally weighted Bloch spaces to Bloch-type spaces are investigated. c ©2012 NGA. All rights reserved.

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012